Non-vanishing of Poincaré series

Sonja Žunar

Faculty of Geodesy, University of Zagreb

Young Scholars in the Analytic Theory of Numbers and Automorphic Forms

Mathematical Institute, University of Bonn

28 March 2022

Examples of Poincaré series on $\mathcal{H} = \mathbb{C}_{\Im(\tau) > 0}$

For $k \in 4 + 2\mathbb{Z}_{\geq 0}$ and $n \in \mathbb{Z}_{>0}$, writing $j\left(\begin{pmatrix}a & b\\c & d\end{pmatrix}, \tau\right) = c\tau + d$:

• the classical holomorphic Eisenstein series $E_k \in M_k(\mathrm{SL}_2(\mathbb{Z}))$,

$${\sf E}_k(au):=\sum_{\gamma\in {
m SL}_2({\mathbb Z})_\inftyackslash {
m SL}_2({\mathbb Z})}j(\gamma, au)^{-k},\qquad au\in {\mathcal H},$$

→ does not vanish at the cusps, so does not vanish identically • the classical Poincaré series $\psi_{n,k} \in S_k(\mathrm{SL}_2(\mathbb{Z}))$,

$$\psi_{n,k}(\tau) := \sum_{\gamma \in \mathrm{SL}_2(\mathbb{Z})_\infty \setminus \mathrm{SL}_2(\mathbb{Z})} e^{2\pi i n \gamma \cdot \tau} j(\gamma, \tau)^{-k}, \qquad \tau \in \mathcal{H}$$

~→ ?

Which $\psi_{n,k}$ are identically zero?

For $k \in 4 + 2\mathbb{Z}_{\geq 0}$ and $n \in \mathbb{Z}_{\geq 0}$, $\psi_{n,k} \in S_k(\mathrm{SL}_2(\mathbb{Z}))$ is defined by

$$\psi_{n,k}(\tau) := \sum_{\gamma \in \mathrm{SL}_2(\mathbb{Z})_\infty \setminus \mathrm{SL}_2(\mathbb{Z})} e^{2\pi i n \gamma \cdot \tau} j(\gamma, \tau)^{-k}, \qquad \tau \in \mathcal{H}.$$

- $d_k := \dim_{\mathbb{C}} S_k(\mathrm{SL}_2(\mathbb{Z})) = 0$ for $k \in \{4, 6, 8, 10, 14\}$.
- $\{\psi_{1,k}\ldots,\psi_{d_k,k}\}$ is a basis of $S_k(\mathrm{SL}_2(\mathbb{Z}))$.
- Ideas for $n > d_k$:

Rankin (1980)	estimating the n^{th} Fourier coefficient of $\psi_{n,k}$	$n \le k^{2 - \frac{c}{\log \log k}}$ for $k >> 0$
Rhoades (2011)	reformulation in terms of existence of weakly modular forms with a given principal part of Fourier expansion	$n\leq \frac{1}{12}\left(k-2\right)$
Muić (2011)	integral non-vanishing criterion	$n \leq \frac{1}{4\pi} \left(k - \frac{8}{3} \right)$
	Sonia Žunar Non-vanishing of Poincare	é series 3/24

Poincaré series

Let:

- *G* be a locally compact Hausdorff group, second-countable and unimodular, with Haar measure *dg*
- $\Lambda \subseteq \Gamma$ be discrete subgroups of G
- $\chi: \mathsf{\Gamma} \to \mathbb{C}^{\times}$ be a unitary character
- $\varphi: G \to \mathbb{C}$ be a measurable function such that:

(F1)
$$\varphi(\lambda g) = \chi(\lambda)\varphi(g), \quad \lambda \in \Lambda, \ g \in G.$$

(F2) $|\varphi| \in L^1(\Lambda \setminus G).$

Lemma

The Poincaré series

$$\left(\mathsf{P}_{\mathsf{A} \setminus \mathsf{F}, \chi} \varphi
ight) (g) := \sum_{\gamma \in \mathsf{A} \setminus \mathsf{F}} \overline{\chi(\gamma)} \, \varphi(\gamma g)$$

converges absolutely almost everywhere on G, and $|P_{\Lambda\setminus\Gamma,\chi}\varphi| \in L^1(\Gamma\setminus G).$

Theorem 1 (Muić 2009; Ž. 2018)

We have

$$\int_{\Gamma \setminus G} \left| \left(P_{\Lambda \setminus \Gamma, \chi} \varphi \right) (g) \right| \, dg > 0$$

if there exists a Borel-measurable set $C \subseteq G$ such that: (C1) $CC^{-1} \cap \Gamma \subseteq \Lambda$. (C2) We have

$$\int_{\Lambda\setminus\Lambda C} |\varphi(g)| \, dg > \frac{1}{2} \int_{\Lambda\setminus G} |\varphi(g)| \, dg$$

for some measurable function $|\ \cdot\ |:\mathbb{C}\to\mathbb{R}_{\geq 0}$ such that:

(B1)
$$|0| = 0.$$

(B2) $|z| = ||z||, z \in \mathbb{C}.$
(B3) $|\sum_{n=1}^{\infty} z_n| \le \sum_{n=1}^{\infty} |z_n|$ for every $(z_n)_{n \in \mathbb{Z}_{>0}} \subseteq \mathbb{C}$ such that $\sum_{n=1}^{\infty} |z_n| < \infty.$

Applications (Muić; Ž.)

- A Cuspidal automorphic forms on (the metaplectic cover of) $SL_2(\mathbb{R})$ and cusp forms of (half-)integral weight:
 - Classical Poincaré series $\psi_{\Gamma,n,k,\chi} \in S_k(\Gamma,\chi)$
 - II π being an integrable discrete series of (the metaplectic cover of) $SL_2(\mathbb{R})$, Poincaré series of *K*-finite matrix coefficients of π that transform on both sides as characters of *K*
 - III Cusp forms $f_s \in S_k(\Gamma, \chi)$ such that

 $L(s, f) = \langle f, f_s \rangle_{S_k(\Gamma, \chi)}, \qquad f \in S_k(\Gamma, \chi).$

- B Cuspidal vector-valued modular forms:
 - Classical and elliptic vector-valued Poincaré series.

Applications (Muić; Ž.)

- A Cuspidal automorphic forms on (the metaplectic cover of) $SL_2(\mathbb{R})$ and cusp forms of (half-)integral weight:
 - Classical Poincaré series $\psi_{\Gamma,n,k,\chi} \in S_k(\Gamma,\chi)$
 - II π being an integrable discrete series of (the metaplectic cover of) $SL_2(\mathbb{R})$, Poincaré series of *K*-finite matrix coefficients of π that transform on both sides as characters of *K*
 - III Cusp forms $f_s \in S_k(\Gamma, \chi)$ such that

 $L(s, f) = \langle f, f_s \rangle_{S_k(\Gamma, \chi)}, \qquad f \in S_k(\Gamma, \chi).$

- B Cuspidal vector-valued modular forms:
 - Classical and elliptic vector-valued Poincaré series.

Non-vanishing criterion for Poincaré series on the metaplectic cover of $SL_2(\mathbb{R})$

Non-vanishing criterion for Poincaré series of half-integral weight on ${\cal H}$

 \sim

The metaplectic cover of $SL_2(\mathbb{R})$

Writing
$$\mathcal{H} := \mathbb{C}_{\Im(z)>0}$$
,
 $\operatorname{SL}_2(\mathbb{R})^\sim := \left\{ \sigma = \begin{pmatrix} g_\sigma = \begin{pmatrix} a_\sigma & b_\sigma \\ c_\sigma & d_\sigma \end{pmatrix}, \eta_\sigma \end{pmatrix} \in \operatorname{SL}_2(\mathbb{R}) \times \mathbb{C}^{\mathcal{H}} : \eta_\sigma \text{ is holomorphic and } \eta^2_\sigma(z) = c_\sigma z + d_\sigma \text{ for all } z \in \mathcal{H} \right\}.$

Multiplication rule:

$$\sigma_1\sigma_2 := (g_{\sigma_1}g_{\sigma_2}, \eta_{\sigma_1}(g_{\sigma_2}.z)\eta_{\sigma_2}(z)), \qquad \sigma_1, \sigma_2 \in \mathrm{SL}_2(\mathbb{R})^{\sim}.$$

Left action on \mathcal{H} :

$$\sigma.z:=\frac{a_{\sigma}z+b_{\sigma}}{c_{\sigma}z+d_{\sigma}}.$$

For every $k \in \frac{1}{2} + \mathbb{Z}_{\geq 0}$, right action on $\mathbb{C}^{\mathcal{H}}$:

$$\left(f\big|_k\sigma\right)(z):=f\left(\sigma.z\right)\,\eta_\sigma(z)^{-2k},\qquad z\in\mathcal{H}.$$

A B + A B +

The metaplectic cover of $SL_2(\mathbb{R})$

A smooth covering homomorphism of degree 2:

$$P: \mathrm{SL}_2(\mathbb{R})^{\sim} \to \mathrm{SL}_2(\mathbb{R}), \qquad P(\sigma):=g_{\sigma}.$$

Using shorthand notation $(g_{\sigma}, \eta_{\sigma}(i))$ for $\sigma = (g_{\sigma}, \eta_{\sigma}) \in \mathrm{SL}_2(\mathbb{R})^{\sim}$, we have the **Iwasawa parametrization** $\mathbb{R} \times \mathbb{R}_{>0} \times \mathbb{R} \to \mathrm{SL}_2(\mathbb{R})^{\sim}$,

$$(x, y, t) \mapsto \underbrace{\left(\begin{pmatrix} 1 & x \\ & 1 \end{pmatrix}, 1\right)}_{=: n_{x} \in N} \underbrace{\left(\begin{pmatrix} y^{\frac{1}{2}} \\ & y^{-\frac{1}{2}} \end{pmatrix}, y^{-\frac{1}{4}}\right)}_{=: a_{y} \in A} \underbrace{\left(\begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix}, e^{i\frac{t}{2}}\right)}_{=: \kappa_{t} \in K}$$

Haar measure on $\mathrm{SL}_2(\mathbb{R})^\sim$: for $\varphi \in \mathcal{C}_c(\mathrm{SL}_2(\mathbb{R})^\sim)$,

$$\int_{\mathrm{SL}_2(\mathbb{R})^{\sim}} \varphi(g) \, dg := \frac{1}{4\pi} \int_0^{4\pi} \int_{\mathcal{H}} \varphi(n_{\mathsf{x}} \mathsf{a}_{\mathsf{y}} \kappa_t) \, d\mathsf{v}(\mathsf{x} + i\mathsf{y}) \, dt,$$

where $dv(x + iy) := \frac{dx \, dy}{y^2}$ for $x \in \mathbb{R}$ and $y \in \mathbb{R}_{>0}$. *K* is a maximal compact subgroup; $\widehat{K} = \{\chi_k(\kappa_t) := e^{-ikt} : k \in \frac{1}{2}\mathbb{Z}\}$. Spaces $S_k(\Gamma, \chi)$ of cusp forms of half-integral weight

From now on, let:

- Γ be a discrete subgroup of finite covolume in $\mathrm{SL}_2(\mathbb{R})^\sim$
- $\chi: \Gamma \to \mathbb{C}^{\times}$ be a character of finite order

•
$$k \in \frac{1}{2} + \mathbb{Z}_{\geq 0}$$
.

A cusp form $f \in S_k(\Gamma, \chi)$ is a holomorphic function $f : \mathcal{H} \to \mathbb{C}$ such that:

•
$$f|_k \gamma = \chi(\gamma) f$$
 for all $\gamma \in \Gamma$

• f vanishes at all cusps of $P(\Gamma) := \{g_{\gamma} : \gamma \in \Gamma\}.$

Petersson inner product on $S_k(\Gamma, \chi)$:

$$\langle f_1, f_2 \rangle_{S_k(\Gamma,\chi)} := \frac{1}{\varepsilon_{\Gamma}} \int_{\Gamma \setminus \mathcal{H}} f_1(z) \overline{f_2(z)} \, \Im(z)^k \, dv(z),$$

where $\varepsilon_{\Gamma} := |\Gamma \cap Z(\mathrm{SL}_2(\mathbb{R})^{\sim})|.$

 \ldots is defined by

$$\begin{split} f: \mathcal{H} \to \mathbb{C} &\mapsto F_f: \mathrm{SL}_2(\mathbb{R})^{\sim} \to \mathbb{C}, \\ F_f(\sigma) &:= \left(f\big|_k \sigma\right)(i), \end{split}$$

restricts to an isometry

$$\mathcal{S}_k(\Gamma,1) o \mathcal{A}_{\textit{cusp}}\left(\Gamma ackslash \mathrm{SL}_2(\mathbb{R})^\sim
ight) \subseteq L^2\left(\Gamma ackslash \mathrm{SL}_2(\mathbb{R})^\sim
ight),$$

and maps

$$P_{\Lambda\setminus\Gamma,\chi}f := \sum_{\gamma\in\Lambda\setminus\Gamma} \overline{\chi(\gamma)} f\big|_k \gamma \; \mapsto \; P_{\Lambda\setminus\Gamma,\chi}F_f = \sum_{\gamma\in\Lambda\setminus\Gamma} \overline{\chi(\gamma)} F_f(\gamma \cdot).$$

()

æ

Non-vanishing criterion for Poincaré series on ${\mathcal H}$

Let $f : \mathcal{H} \to \mathbb{C}$ be a measurable function such that:

• $f|_k \lambda = \chi(\lambda)f$, $\lambda \in \Lambda$ • $\int_{\Lambda \setminus \mathcal{H}} \left| f(z)\Im(z)^{\frac{k}{2}} \right| dv(z) < \infty$. Then, $\int_{\Gamma \setminus \mathcal{H}} \left| \left(P_{\Lambda \setminus \Gamma, \chi} f \right)(z)\Im(z)^{\frac{k}{2}} \right| dv(z) < \infty$.

Theorem 2

If χ|_{Γ∩Z(SL₂(ℝ)~)} ≠ χ_k|_{Γ∩Z(SL₂(ℝ)~)}, then P_{Λ\Γ,χ}f ≡ 0.
 If χ|_{Γ∩Z(SL₂(ℝ)~)} = χ_k|_{Γ∩Z(SL₂(ℝ)~)}, then P_{Λ\Γ,χ}f ≠ 0 if there exists a Borel-measurable set S ⊆ H such that:

(1)
$$\forall z_1, z_2 \in S \quad z_1 \neq z_2 \Rightarrow \Gamma.z_1 \neq \Gamma.z_2.$$

(2) $\int_{\Lambda \setminus \Lambda.S} \left| f(z)\Im(z)^{\frac{k}{2}} \right| dv(z) > \frac{1}{2} \int_{\Lambda \setminus \mathcal{H}} \left| f(z)\Im(z)^{\frac{k}{2}} \right| dv(z)$ for some

measurable function $| \cdot | : \mathbb{C} \to \mathbb{R}_{\geq 0}$ satisfying (B1) – (B3).

L-functions of cusp forms of half-integral weight

L-functions of cusp forms of half-integral weight

Let:

•
$$k \in \frac{1}{2} + \mathbb{Z}_{\geq 0}$$

- Γ be a discrete subgroup of finite covolume in SL₂(ℝ)[~] such that ∞ is a cusp of P(Γ)
- $\chi: \Gamma \to \mathbb{C}^{\times}$ be a character of finite order such that

$$\chi(\gamma) = \eta_{\gamma}^{-2k}, \qquad \gamma \in \Gamma_{\infty}.$$

• $h \in \mathbb{R}_{>0}$ such that $Z(\mathrm{SL}_2(\mathbb{R})^{\sim}) \Gamma_{\infty} = Z(\mathrm{SL}_2(\mathbb{R})^{\sim}) \langle n_h \rangle.$

The *L*-function of a cusp form $f(z) = \sum_{n=1}^{\infty} a_n(f) e^{2\pi i n \frac{z}{h}}$ in $S_k(\Gamma, \chi)$ is the function $L(\cdot, f) : \mathbb{C}_{\Re(s) > \frac{k}{2} + 1} \to \mathbb{C}$,

$$L(s,f) := \sum_{n=1}^{\infty} \frac{a_n(f)}{n^s}.$$

Suppose $k \in \frac{9}{2} + \mathbb{Z}_{\geq 0}$. Let $f \in S_k(\Gamma, \chi)$. Then, for $\Re(s) < \frac{k}{2}$ the series

$$\Psi_{\Gamma,k,\chi,s} := P_{\Gamma_{\infty} \setminus \Gamma,\chi} \left(\sum_{n=1}^{\infty} n^{s-1} e^{2\pi i n \frac{\cdot}{h}} \right)$$

converges absolutely and uniformly on compact sets in \mathcal{H} and defines an element of $S_k(\Gamma, \chi)$, and the formula

$$L(s,f) = \frac{\varepsilon_{\Gamma}(4\pi)^{k-1}}{h^{k}\Gamma(k-1)} \langle f, \Psi_{\Gamma,k,\chi,k-\overline{s}} \rangle_{S_{k}(\Gamma,\chi)}$$

defines a holomorphic continuation of $L(\cdot, f)$ to the half-plane $\mathbb{C}_{\Re(s) > \frac{k}{2}}$.

Theorem 4 (Non-vanishing of L-functions)

Suppose that $k \in \frac{9}{2} + \mathbb{Z}_{\geq 0}$. Let $\frac{k}{2} < \Re(s) < k - 1$. Let us denote

$$N := \inf \left\{ |c| \neq 0 : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in P(\Gamma) \right\} > 0.$$

If $\frac{Nh}{\pi}$ is greater than or equal to

$$\max\left\{\frac{4}{k-\frac{8}{3}}, \left(\frac{e^{\frac{\pi}{2}|\Im(s)|}\Gamma\left(\frac{k-\Re(s)+1}{2}\right)\Gamma\left(\frac{k-\Re(s)-1}{2}\right)2^{\frac{k}{2}-1}}{\pi\Gamma\left(\frac{k}{2}-1\right)\left(\Re(s)-\frac{k}{2}\right)}\right)^{\frac{1}{\Re(s)-\frac{k}{2}}}\right\},$$

then

$$L(s, \Psi_{\Gamma,k,\chi,k-\overline{s}}) > 0.$$

Corollary

There exists $k_0 \in \frac{9}{2} + \mathbb{Z}_{\geq 0}$ such that for every choice of

•
$$k \in k_0 + \mathbb{Z}_{\geq 0}$$

•
$$s \in C_k$$

- a discrete subgroup Γ of finite covolume in $\mathrm{SL}_2(\mathbb{R})^\sim$ such that ∞ is a cusp of $P(\Gamma)$
- a character $\chi: \Gamma \to \mathbb{C}^{\times}$ of finite order satisfying $\chi(\gamma) = \eta_{\gamma}^{-2k}$ for all $\gamma \in \Gamma_{\infty}$

we have

$$L(s,\Psi_{\Gamma,k,\chi,k-\overline{s}})>0.$$

A non-vanishing criterion for vector-valued Poincaré series on \mathcal{H}

 $\mathrm{SL}_2(\mathbb{R})$ acts on $\mathcal H$ by Möbius transformations:

$$g. au = rac{a au + b}{c au + d}, \qquad g = egin{pmatrix} a & b \ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{R}), \ au \in \mathcal{H}.$$

Let:

• v be the standard $\mathrm{SL}_2(\mathbb{R})\text{-invariant}$ Radon measure on $\mathcal{H}:$

$$dv(x+iy)=\frac{dx\,dy}{y^2}$$

• $v : \operatorname{SL}_2(\mathbb{Z}) \to \mathbb{C}_{|z|=1}$ be a multiplier system of weight $k \in \mathbb{R}$.

э.

伺 と く ヨ と く ヨ と

Poincaré series on $\mathcal H$

Let:

- $\Lambda\subseteq\Gamma$ be subgroups of ${\rm SL}_2(\mathbb{Z})$ such that $|{\rm SL}_2(\mathbb{Z}):\Gamma|<\infty$
- $\rho: \Gamma \to \operatorname{GL}_n(\mathbb{C})$ be a unitary representation.

 Γ acts on the right on $(\mathbb{C}^n)^{\mathcal{H}}$:

$$\left(f\big|_{k,\rho}\gamma\right)(\tau) = v(\gamma)^{-1}j(\gamma,\tau)^{-k}\rho(\gamma)^{-1}f(\gamma,\tau), \quad \tau \in \mathcal{H}.$$

For every measurable function $f:\mathcal{H}\to\mathbb{C}^n$ such that

$$f\big|_{k,\rho}\lambda = f, \qquad \lambda \in \Lambda,$$

we define the **Poincaré series**

$$P_{\Lambda\setminus\Gamma,\rho}f:=\sum_{\gamma\in\Lambda\setminus\Gamma}f\big|_{k,\rho}\gamma.$$

It converges absolutely a.e. on \mathcal{H} if $\int_{\Lambda \setminus \mathcal{H}} \|f(\tau)\| \Im(\tau)^{\frac{k}{2}} d\mathsf{v}(\tau) < \infty$.

Suppose that $-I_2 \in \Lambda$. Let f be such that the series $P_{\Lambda \setminus \Gamma, \rho} f$ converges absolutely a.e. on \mathcal{H} . Then,

$$\int_{\Gamma \setminus \mathcal{H}} \left\| \left(\mathcal{P}_{\Lambda \setminus \Gamma, \rho} f \right) (\tau) \right\| \, \Im(\tau)^{\frac{k}{2}} \, d\mathbf{v}(\tau) > 0$$

if there exists a Borel-measurable set $A \subseteq \mathcal{H}$ with the following properties: (A1) No two points of A are mutually Γ -equivalent. (A2) Denoting $(\Lambda.A)^c := \mathcal{H} \setminus \Lambda.A$, we have $\int_{\Lambda \setminus \Lambda.A} \|f(\tau)\| \ \Im(\tau)^{\frac{k}{2}} dv(\tau) > \int_{\Lambda \setminus (\Lambda.A)^c} \|f(\tau)\| \ \Im(\tau)^{\frac{k}{2}} dv(\tau).$

An example application

We proved the non-vanishing of the **classical vector-valued Poincaré** series

$$\Psi_{\Gamma,\rho,k,\nu,u} := P_{\Gamma_{\infty}\setminus\Gamma,\rho}\left(e^{2\pi i\nu\tau} u\right)$$

for $k > \frac{8}{3}$, $\Gamma \in \{\Gamma_0(N), \Gamma_1(N), \Gamma(N)\}$ and some suitable choices of:

• a unitary representation $\rho: \Gamma \to \operatorname{GL}_n(\mathbb{C})$

•
$$u \in \mathbb{Q}_{>0}$$
 such that $u \leq rac{N}{4\pi} \left(k - rac{8}{3}
ight)$

•
$$u \in \mathbb{C}^n \setminus \{0\}$$

by applying Theorem 5 with

$$A =]0, M] \times \left] \frac{1}{N}, \infty \right[\subseteq \mathcal{H},$$

where
$$M = \begin{cases} 1, & \text{if } \Gamma \in \{\Gamma_0(N), \Gamma_1(N)\} \\ N, & \text{if } \Gamma = \Gamma(N). \end{cases}$$

Thank you!

< 1 →

→ Ξ →

æ